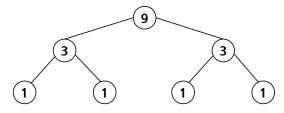
자료구조론 국가 전산 7급 2016년 8월 27일

☆ 합격선/최종합격인원(73.57점/27명) - 채용예정인원 26명 ☆


1. 다음 C 언어 함수를 이용하여 asterisk(9)를 수행할 때 출력되는 '*'의 개수는?

```
#include <stdio,h>
void asterisk(int I)
{
    if(i>1){
        asterisk(i/3);
        asterisk(i/3);
    }
    printf("*");
}

① 6 ② 7
③ 8 ④ 9
```

☆ 재귀호출 - 재귀트리 이용

- 먼저, 주어진 재귀호출 문제를 재귀트리로 나타내면 다음과 같다.
- asterisk(9)를 수행

- 간단하게 답을 구하면, asterisk(9)가 7번 호출되므로 '*'가 7개 출력된다.
- 주어진 문제처럼 같은 것을 단순하게 출력하는 것을 묻는 문제는 재귀트리를 그려서 푸는 것이 가장 빠르다.
- 전산 7급에서 재귀호출 문제는 매년 출제되고 있다.

156 http://cafe.daum.net/pass365(홍재연)

2. 가장 낮은 자릿수(LSD; Least Significant Digit) 우선 방식의 기수정렬(radix sort)을 이용하여, 다음과 같이 배열에 저장된 10진수 데이터를 오름차순으로 정렬하고자 한다. 오른쪽에서 두 번째 자릿수(digit) 기준의 정렬 단계 후에 위치 [3]에 있는 데이터로 옳은 것은? (단, 각 단계별 정렬의 기준이 되는 자릿수는 0에서 9까지의 값을 가진다)

위치	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
데이터	307	424	132	216	241	835	546	630

① 630

② 546

③ 132

4 216

위치	원시리스트	Pass 1큐	1차 재배열	Pass 2큐	2차 재배열
[0]	307	0:630	630	0:307	307
[1]	424	1:241	241	1:216	216
[2]	132	2:132	132	2 : 424 3 : 630, 132, 835	424
[3]	216	4:424	424	4: 241, 546	<u>630</u>
[4]	241	5:835	835	5:	132
[5]	835	6 : 216, 546 7 : 307	216	6:	835
[6]	546	8:	546	8:	241
[7]	630	9:	307	9:	546

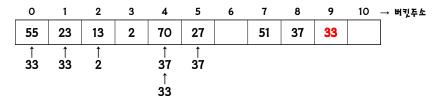
일의 자리값을 기준으로 분배 ↓ 십의 자리값을 기준으로 분바

◈ 기수정렬 정리

- 최대유효숫자(Most Significant Digit; MSD) 정렬 : 최대 유효키를 먼저 적용한다.
- 최소유효숫자(Least Significant Digit; LSD) 정렬 : 최소 유효키를 먼저 적용한다.
 - → 10진수 321에서 일의 자리인 1이 최소 유효키에 해당하고
 - → 10진수 321에서 백의 자리인 3이 최대 유효키에 해당한다.
- LSD 정렬이 MSD 정렬에 비해 간단하다. 즉, 오버헤드가 적다.

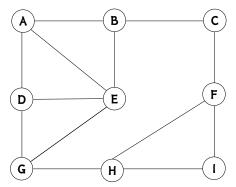
3. 해시 테이블 HT의 크기는 11이고 0부터 10까지의 인덱스를 가진다. 해시함수 h(x)는 제산함수 로서 h(x) =x mod 11로 표현된다. 충돌 해결책으로는 이차조사법(quadratic probing)을 사용한 다. 해싱을 통해 해시 테이블에 저장할 레코드들의 키 값 순서는 다음과 같다. 마지막 레코드가 저장되는 해시 테이블 위치는? (단, 첫 번째 레코드가 저장되기 전에 해시 테이블은 비어 있고, 해시 테이블 버킷(bucket)당 슬롯(slot) 수는 1개이다)

51, 27, 70, 55, 13, 2, 37, 23, 33


① HT[1]

② HT[4]

③ HT[6] ④ HT[9]


☆ 이차조사법

- 이차조사법은 충돌이 발생하면, 색인증가를 이차함수를 사용한다.
- 이차함수는 다양하지만, 주어진 문제에서 적용할 이차함수를 제시하지 않았다.
- 주어진 문제에서는 이차함수 x^2 을 사용해야 답이 있다.(이의신청하면 될까?)
- 즉, 충돌이 발생하면 색인증가를 1, 4, 9, 16, ··· 순으로 적용해야 답이 있다.

$h(51) = 51 \mod 11 = 7$	키 51은 버킷주소 7 에 저장
$h(27) = 27 \mod 11 = 5$	키 27은 버킷주소 5 에 저장
$h(70) = 70 \mod 11 = 4$	키 70은 버킷주소 4 에 저장
$h(55) = 55 \mod 11 = 0$	키 55는 버킷주소 0 에 저장
$h(13) = 13 \mod 11 = 2$	13은 버킷주소 2 에 저장
$h(2) = 2 \mod 11 = 2$	1차 충돌 발생, 색인증가를 1, 키 2는 버킷주소 3에 저장
h(37) = 37 mod 11 = 4	1차 충돌 발생, 색인증가를 1, 2차 충돌 발생, 색인증가를 4, 키 37은 버킷주소 8 에 저장
$h(23) = 23 \mod 11 = 1$	키 23은 버킷주소 1 에 저장
h(33) = 33 mod 11 = 0	1차 충돌 발생, 색인증가를 1, 2차 충돌 발생, 색인증가를 4, 3차 충돌 발생, 색인증가를 9, 키 33은 버킷주소 9에 저장

4. 시작 정점이 A일 때, 다음 그래프에 대한 깊이우선탐색(DFS: Depth First Search) 및 너비우 선탐색(BFS: Breadth First Search)의 방문 순서로 옳은 것은? (단, 인접한 정점들은 알파벳 순 서로 방문한다)

① DFS: A, B, C, F, H, G, D, E, I

BFS: A, B, C, D, E, G, F, H, I

② DFS: A, B, C, F, H, G, D, E, I

BFS: A, B, D, E, C, G, F, H, I

③ DFS: A, B, C, F, H, G, E, D, I

BFS: A, B, D, E, C, G, F, H, I

4 DFS: A, B, C, F, H, G, E, D, I

BFS: A, B, C, D, E, G, F, H, I

☆ 깊이우선탐색/너비우선탐색

DFS

- 임의의 한 정점에서 방문되지 않은 다른 정점을 추적해 가는 방식이다.
- 만약, 어떤 정점에서 모든 정점이 방문되었으면 되돌아가면서 방문되지 않은 정점을 찾는다.
- •임의의 한 정점에 방문되지 않은 인접한 모든 정점을 우선적으로 방문하는 방식이다.

BFS

• 만약, 어떤 정점에서 모든 정점이 방문되었으면 가장 먼저 방문한 정점에서 똑 같이 인접한 정점 중에서 방문되지 않은 정점을 찾는다.

• DFS: A, B, C, F, H, G, D, E, I

• BFS: A, B, D, E, C, G, F, H, I

5. 다음 C 프로그램 실행 결과로 첫 번째 줄에 출력되는 값과 두 번째 줄에 출력되는 값의 차이 값은? (단, int로 선언된 정수형 변수는 4바이트를 차지하고, char로 선언된 문자형 변수는 1바이트를 차지한다) [2016년 국가 7급]

```
#include <stdio.h>
void main() {
    struct node {
        int id;
        char name[8];
        int score;
    } A[10];
    printf("%d\n", &A[0]);
    printf("%d\n", &A[4]);
}

① 56 ② 64
③ 72 ④ 80
```

☆ 구조체 배열

• 구조체 배열 원소 크기 = 4 + 8 + 4 = 16byte

A[0]	A[1]	A[2]	A[3]	A[4]		A [9]
100	116	132	148	164		

• 출력 값 차이 : &A[4]=164이고 &A[0]=100 이므로, 164 - 100 = 64

정답 : ②