3. 오일러 파이 함수(Euler's phi function)

◈ 최대공약수와 최소공배수

- ① 두 정수 12와 18의 공통된 약수는 다음과 같다.
- 12의 약수 = { -12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12 } 18의 약수 = { -18, -6, -3, -2, -1, 1, 2, 3, 6, 18 }
- 12와 18의 공약수 = { -6, -3, -2, -1, 1, 2, 3, 6 }
- 최대공약수 gcd(12, 18) = 6이다. 가장 큰 공통된 약수이다.
- ② 두 정수 4와 6의 공통된 배수는 다음과 같다. [4, 6] = 12

$$\{\cdots, -48, -36, -24, -12, 0, 12, 24, 36, 48, \cdots\}$$

- 두 정수 4와 6의 공통된 배수 중 가장 작은 양수는 12이다.
- 공배수 중에서 양수이면서 가장 작은 수 12를 최소공배수(lcm)라 한다.

gcd / lcm 표현 방법

- gcd(12, 18) = 6은 간단하게 (12, 18) = 6처럼 표현한다. → 소괄호 사용(중요함)
- lcm(4, 6) = 12는은 간단하게 [4, 6] = 12처럼 표현한다. → 대괄호 사용

[예제] 두 수 96과 60의 최대공약수와 최소공배수는?

- 2) 96, 60
- 2) 48, 30
- 3) 24, 15

8. 5 → 8과 5는 서로소가 된다.

- 최대공약수 gcd(96, 60) = 2 × 2 × 3 = 12
- 최소공배수 lcm(96, 60) = 2 × 2 × 3 × 8 × 5 = 480

2 http://cafe.daum.net/pass365(홍재연)

◈ 서로소(relatively prime / disjoint)

- ① 최대공약수 gcd가 1인 두 정수를 서로소라 한다.
 - → 다르게 정의하면, 서로소는 1과 -1 이외에는 공약수를 갖지 않는 두 정수이다.
- ② 두 정수의 쌍 (4, 9), (7, 13), (3, 4) 등은 각각 서로소 관계이다.

4의 약수 = { -4, -2, -1, 1, 2, 4 } 이고, 9의 약수 = { -9, -3, -1, 1, 3, 9 } 이다.

- 4와 9의 공약수는 1과 -1 뿐이다. 4와 9는 서로소이고. (4, 9) = 1이다.
- 정보보안을 공부하면서 "(4, 9) = 1"와 같은 표현을 많이 보게 될 것이다.
- ③ 서로소는 영어로 disjoint이다. 두 수가 별개라는 뜻이다.

오일러 파이 함수(Euler's phi function) - Φ, φ

- 오일러 ∅ 함수는 1부터 n까지의 양의 정수 중에서
- Φ(n) 마지막 n과 서로소 관계에 있는 수의 개수를 나타내는 함수이다.
 - 그리스 대소문자 $\Phi(n)$ 또는 $\varphi(n)$ 으로 표기하고, 통상적으로 '파이엔'으로 읽는다.

1, 2, 3, 4, 5에서 6과 서로소인 수는 몇 개인가?

[풀이] $\Phi(6) = ?$

정수	공약수	설명
1	(1, 6) = 1	사이 가스레가 나무나 그 4 000명 그야도를 가는 이번 두 지수이던
2	(2, 6) = 1, 2	• 양의 정수에서 <u>서로소</u> 는 <u>1 이외에는 공약수를 갖지 않는 두 정수</u> 이다.
3	(3, 6) = 1, 3	• 6 과 서로소 관계의 수는 1, 5이다. (2개)
4	(4, 6) = 1, 2	• 해서, $\Phi(n) = \Phi(6) = 2$
5	(5, 6) = 1	11 15 * (ti) * (U) L

1, 2, 3, 4, 5, 6에서 7과 서로소인 수는 몇 개인가?

[풀이] $\Phi(7) = ?$

정수	공약수	설명									
1	(1, 7) = 1										
2	(2, 7) = 1	•양의 정수에서 서로소는 1 이외에는 공약수를 갖지 않는 두 정수이다.									
3	(3, 7) = 1	• 정수 1에서 6까지 모두 7과 서로소 관계이다. (6개)									
4	(4, 7) = 1										
5	(5, 7) = 1	• 해서, $\Phi(n) = \Phi(7) = 6$									
6	(6, 7) = 1										

- •양의 정수에서 서로소는 1 이외에는 공약수를 갖지 않는 두 정수이다.
- 따라서, 7과 서로소인 수는 1, 2, 3, 4, 5, 6이다. 즉, 6개이다.
- •소수 7은 자신인 7을 제외한 모든 수가 자신 7과 서로소인 관계에 있다.

예제 3

1, 2, 3, 4, 5, 6, 7, 8, 9, 10에서 11과 서로소인 수는 몇 개인가?

[풀이]-----

11의 약수 = {1, 11} → 11은 소수이다.

$$\therefore \Phi(n) = \Phi(11) = 11 - 1 = 10$$

• 소수인 경우, Φ (n) 값은 자신 n에서 1을 뺀 값이 된다.[Φ (n)의 성질]

// 양의 정수 1부터 80까지의 오일러 파이 함수 값

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Φ(n)	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8	8	16	6	18	8
n	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Φ(n)	12	10	22	8	20	12	18	12	28	8	30	16	20	16	24	12	36	18	24	16
n	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Φ(n)	40	12	42	20	24	22	46	16	42	20	32	24	52	18	40	24	36	28	58	16
n	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Φ(n)	60	30	36	32	48	20	66	32	44	24	70	24	72	36	40	36	60	24	78	32

• 핵심 : n이 소수이면, $\Phi(n)$ 값은 자신에서 1을 뺀 값이다. 즉, $\Phi(n) = n - 1$

4 http://cafe.daum.net/pass365(홍재연)

기출문제 분석

- 1. 오일러 함수 Φ ()를 이용해 정수 n=15에 대한 Φ (n)을 구한 값으로 옳은 것은? (단, 여기서 오일러 함수 Φ ()는 RSA 암호 알고리즘에 사용되는 함수이다) [2018년 서울 9급]
 - 1
 - ② 5
 - 3 8
 - (4) 14
- 🕁 오일러 파이 함수(Euler's phi function) Φ, φ
- •오일러 Φ 함수는 1부터 n까지의 양의 정수 중에서
- 마지막 n과 서로소 관계에 있는 수의 개수를 나타내는 함수이다.
- 그리스 대소문자 $\Phi(n)$ 또는 $\varphi(n)$ 으로 표기하고, 통상적으로 '파이엔'으로 읽는다.
- 양의 정수에서 서로소는 1 이외에는 공약수를 갖지 않는 두 정수이다.
- 따라서, 15와 서로소인 수는 1, 2, 4, 7, 8, 11, 13, 14이다. 즉, 8개이다.
- $\therefore \Phi(n) = \Phi(15) = 8$

정답 : ③