2. 배열(array)

1. 배열구조

먼저, 배열 정의는 다음과 같다.

---(배열 정의)---

배열은 색인(index)과 값(value)의 쌍으로 구성된 집합으로, 각 색인은 자신과 관련된 값을 가진다.

- 대부분의 프로그래밍 언어에서 배열이라는 자료구조를 제공한다.
- 일반적으로, 배열의 각 요소는 '기억장소에 연속적으로 이웃해서 기억된다.'

A(1) A(2) A(3) A(4) A(5)

- •이는 배열의 구현 관점에서 보는 한 부분일 뿐이다.
- •배열 정의에서, 배열은 각 요소가 반드시 기억장소에 이웃하게 배치되는 자료구조는 아니다.

// 배열에 대한 두 가지 표준 연산

검색(retrieve)	색인에 대응하는 위치의 값을 찾는다.
저장(store)	색인에 대응하는 위치에 값을 수록한다.

// 1차원 배열

하나의 첨자를 사용하여 표현한 배열을 1차원 배열이라 한다. 다음은 포트란과 C 언어에서 1차원 배열을 선언하는 방법과 배열요소의 관계를 나타낸 것이다.

FORTRAN: DIMENSION A(10)

C : int A[10]; $\rightarrow C$ 언어는 대괄호 []를 사용하여 배열을 선언한다.

A(1)	A(2)	A(3)	A(4)	A(5)	A(6)	A(7)	A(8)	A(9)	A(10)	→ FORTRAN
A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]	A[9]	\rightarrow C

- •이 그림에서 A를 배열명이라 하고. 배열을 구성하는 A(i)를 배열요소라 하고.
- 특정 배열요소에 대응하는 색인 i를 첨자(subscript)라 한다.
- 첨자는 포트란에서는 1, C에서는 0부터 시작된다.

2 http://cafe.daum.net/pass365(홍재연)

// 2차원 배열

1차원 배열 전체가 하나의 배열원소가 될 수 있다. 배열의 배열이라고 한다.

	1열	2열	3열	_
1행	A(1,1)	A(1,2)	A(1,3)	
2행	A(2,1)	A(2,2)	A(2,3)	→ 2행 3열 구조의 2차원 배열

2차원 배열을 기억장소에 배치할 때는 '행우선 또는 열우선'으로 배치할 수 있다.

•행우선 배치 언어: COBOL, C, Java, PASCAL 등

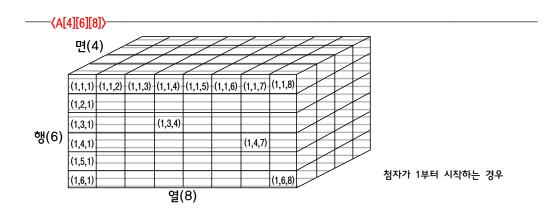
• 열우선 배치 언어: FORTRAN

행우선	A(1,1)	A(1,2)	A(1,3)	A(2,1)	A(2,2)	A(2,3)	→ COBOL에서 이용
열우선	A(1,1)	A(2,1)	A(1,2)	A(2,2)	A(1,3)	A(2,3)	→ FORTRAN에서 이용

- 2차원 배열도 1차원 배열처럼 기억장소에 연속적으로 배치할 수 있으며.
- 단지, 2개의 첨자를 이용하여 배열원소를 취급할 뿐이다.

[예] A(m, n)으로 정의된 2차원 배열에서 배열원소 A(i, j)는 몇 번째 원소인가?

A(1,1)	A(1,2)	A(1,3)		A(1,n)	
A(2,1)	A(2,2)	A(2,3)		A(2,n)	
A(3,1)	A(3,2)	A(3,1)		A(3,n)	• 열
			:		.
			A(i, j) :		• 항
A(m,1)	A(m,2)	A(m,3)	_	A(m,n)	


• 열우선일때 : m(j-1) + i

• 행우선일때 : n(i-1) + j

[Tip] 2차원 배열이 여러 개 있으면 3차원 배열이 될 수 있고, 3차원 배열은 (면, 행, 열)이라는 3개의 첨자로 다룰 수 있다.

// 3차원 배열

A[면][행][열] → 3차원 배열은 (면, 행, 열)이라는 3개의 첨자로 다룰 수 있다.

[예제] 3차원 배열 A[2][6][5]에서 원소 A[2][4][3]의 상대적인 위치 구하기

——⟨A[2][6][5]⟩—

1면	1,1,1	1,1,2	1,1,3	1,1,4	1,1,5
	1,2,1	1,2,2	1,2,3	1,2,4	1,2,5
	1,3,1	1,3,2	1,3,3	1,3,4	1,3,5
	1,4,1	1,4,2	1,4,3	1,4,4	1,4,5
	1,5,1	1,5,2	1,5,3	1,5,4	1,5,5
	1,6,1	1,6,2	1,6,3	1,6,4	1,6,5

1	2,1,1	2,1,2	2,1,3	2,1,4	2,1,5
	2,2,1	2,2,2	2,2,3	2,2,4	2,2,5
	2,3,1	2,3,2	2,3,3	2,3,4	2,3,5
	2,4,1	2,4,2	2,4,3	2,4,4	2,4,5
	2,5,1	2,5,2	2,5,3	2,5,4	2,5,5
	2,6,1	2,6,2	2,6,3	2,6,4	2,6,5

첨자가 1부터 시작하는 경우

↓ ↓**원소 A[2][4][3]**의 상대적인 **위치** 구하기 □

----(A[2][4][3]의 상대적인 위치>----

이전 면의 원소수 + 자신 면에서 자신 행 이전까지의 원소수 + 자신 행에서 자신의 열위치 A[2][4][3]의 상대적인 위치 = (5 - 1 + 1) × (6 - 1 + 1) + (5 - 1 + 1) × (4 - 1) + 3 = (5 × 6) + (5 × 3) + 3 = 48

4 http://cafe.daum.net/pass365(홍재연)

기출문제 분석

- 1. 행우선(row major) 배열 A[3:6][2:7][8:12]에서 A[4][5][10]은 배열 A의 몇 번째 원소인가? (단, 첫 번째 원소는 A[3][2][8]이고, 마지막 원소는 A[6][7][12]이다) [2014년 국가 7급]
 - ① 45
- 2 46
- ③ 47
- 48

☆ 배열에서 몇 번째?

• 먼저, 배열 그림을 그려서 풀면 다음과 같다.

1면	3,2,8	3,2,9	3,2,10	3,2,11	3,2,12
	3,3,8	3,3,9	3,3,10	3,3,11	3,3,12
	3,4,8	3,4,9	3,4,10	3,4,11	3,4,12
	3,5,8	3,5,9	3,5,10	3,5,11	3,5,12
	3,6,8	3,6,9	3,6,10	3,6,11	3,6,12
	3,7,8	3,7,9	3,7,10	3,7,11	3,7,12
	3,5,8 3,6,8	3,5,9 3,6,9	3,5,10 3,6,10	3,5,11 3,6,11	3,5,1

1	4,2,8	4,2,9	4,2,10	4,2,11	4,2,12
	4,3,8	4,3,9	4,3,10	4,3,11	4,3,12
	4,4,8	4,4,9	4,4,10	4,4,11	4,4,12
	4,5,8	4,5,9	4,5,10	4,5,11	4,5,12
	4,6,8	4,6,9	4,6,10	4,6,11	4,6,12
	4,7,8	4,7,9	4,7,10	4,7,11	4,7,12

◈ 공식으로 풀면(3차원배열이므로)

- 이전 면의 원소수 + 자신 면에서 자신 행 이전까지의 원소수 + 자신 행에서 자신의 열위치
- A[4][5][10] = $(12 8 + 1) \times (7 2 + 1) + (12 8 + 1) \times (5 2) + 3$ = $(5 \times 6) + (5 \times 3) + 3$ = 48

정답 : ④