제9장 정렬

1. 개요

정렬(sort)은 자료를 크기 수으로 재배열하는 것이다.

오름차순정렬(ascending)
: 작은 순서 → 큰 순서(비내림차순)
내림차순정렬(descending)
: 큰 순서 → 작은 순서(비오름차순)

먼저, 정렬 알고리즘 종류별로 일반적인 특징을 정리하면 다음과 같다.

정렬방법	수행시간	최악의 경우	기억공간	안정/불안정	제자리정렬
선택정렬	O(n ²)	O(n ²)	n	불안정	0
거품정렬	O(n ²)	O(n ²)	n	안정적	0
삽입정렬	O(n ²)	O(n ²)	n	안정적	0
셀정렬	O(n ²)	O(n ²)	n	불안정	0
힙정렬	$O(n\log_2 n)$	$O(n\log_2 n)$	n	불안정	0
합병정렬	$O(n\log_2 n)$	$O(n\log_2 n)$	2n	안정적	×
퀵정렬	$O(n\log_2 n)$	O(n ²)	n+stack	불안정	0 / ×
기수정렬	O(k(n+q))	O(k(n+q))	(n+1)q	안정적	×

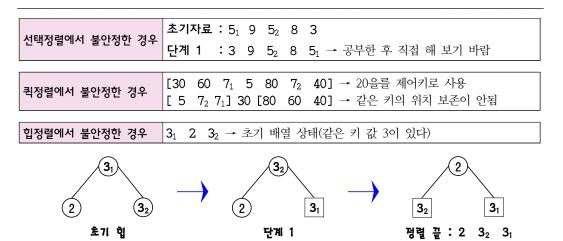
① 정렬 장소에 따른 구분

· 내부정렬 : 정렬 대상 모든 자료를 주기억장소에 적재시켜서 정렬하는 방법 · 외부정렬 : 자료의 양이 너무 많아서 보조기억장소를 이용하여 정렬을 수행

② 정렬 알고리즘 선택에 영향을 미치는 요인

- ·컴퓨터 시스템의 특성 및 정렬 대상이 되는 자료의 양
- ·정렬 대상 자료의 초기 배열 상태 및 키 값의 분포 상태
- · 소요공간 및 수행시간(알고리즘 복잡도)

(1) 정렬에서 안정적(stable)이란?


① n개의 레코드로 구성된 파일에서 각 레코드를 (R1, R2, R3, …, Ri, …, Rn)이라 하고, 각 레코드의 키 값을 (k1, k2, k3, …, ki, …, kn)이라 할 때 키 값 ki가 다음과 같은 조건을 만족할 때 정렬된 파일이라고 한다.

(k1≤k2≤k3≤···≤ki≤···≤kn) → 정렬된 파일의 키 값 관계(키 값이 같을 수도 있다)

- ② 레코드의 키 값이 같은 것이 여러 개 있을 수 있으므로 정렬된 파일의 레코드 순서는 반드시유일한 형태가 될 수 없다.
- ③ 초기 파일에서 i 〈 j이고, ki==kj일 때 정렬된 파일의 레코드 순서도 Ri, Rj를 유지하게 되는 정렬 방법을 안정적(stable) 정렬이라 한다. 키 값이 같은 레코드들의 정렬 순서가 보존되는 정렬을 안정적인 정렬이라 한다.

안정적(stable) 정렬 : 거품정렬, 삽입정렬, 합병정렬, 기수정렬 불안정(unstable) 정렬 : 선택정렬, 셀정렬, 힙정렬, 퀵정렬

// 정렬을 공부하기 전에 안정/불안정에 대해 미리 살펴보면 다음과 같다.

위에서 설명한 것 중 이해되지 않는 부분은 지금부터 설명할 정렬 원리를 공부하면 된다.

(2) 제자리정렬(in-place sort)

- 제자리정렬은 정렬 과정에서 추가 기억장소를 조금만 더 사용하는 알고리즘이다.
- 제자리정렬은 정렬 대상 자료 이외의 추가 기억장소가 상수 개를 넘지 않는 알고리즘이다.
- 제자리정렬은 정렬 대상 자료에 비해 무시할 정도의 기억장소를 더 사용하는 알고리즘이다.
- 제자리정렬 : 선택정렬, 버블정렬, 삽입정렬, 셀정렬, 힙정렬

◈ 퀵정렬

- 퀵정렬은 제자리정렬로 분류할 수도 있고 아닐 수도 있다.
- 퀵정렬은 재귀 알고리즘으로 스택을 사용하는데, 스택의 깊이 공간복잡도는 상수가 아니다.
- 하지만, 퀵정렬은 실제 사용에서는 적은 메모리만을 더 사용하므로 제자리정렬로 분류된다.

◈ 합병정렬

- 기본적으로, 합병정렬은 제자리 정렬(in-place sort)이 아니다.
- 하지만, 합병정렬은 제자리 정렬로 구현할 수 있다.
- 합병정렬의 종류는 많다.
- 합병정렬은 반복 또는 순환으로 구현할 수 있다.

반복 합병정렬	• 제자리 정렬이 아니다.
	• 합병정렬을 수행하기 위한 임시 배열이 추가로 필요하다.
	•레코드 크기가 큰 경우에 이동 횟수가 많으므로 시간 낭비를 초래한다.
개량된 순환 합병정렬	• 제자리 정렬로 구현할 수 있다.
	• 개량된 순환 합병정렬은 연결리스트를 이용하여 구현한다.
	• 개량된 순환 합병정렬에서 추가 메모리는 n개의 포인터 필드만 필요로 한다.
	• 정렬 과정에서 포인터만 변경하면 되므로 물리적인 데이터 이동은 없다.
	• 크기가 큰 레코드를 정렬할 때, 연결리스트를 사용하면 합병정렬은 효율적이다.

•위에 설명된 내용에 합병정렬 부분에 구체적으로 설명되어 있다.

기출문제 분석

1. '어떤 정렬 알고리즘을 선택할 것인가?' 고려할 사항으로 거리가 먼 것은? [2004년 기술고시]

- ① 초기 데이터의 배열 상태
- ② 키 값들의 분포상태
- ③ 소요공간 및 작업시간
- ④ 레코드 내에서 키 필드 위치

☆ 정렬 알고리즘 선택에 영향을 미치는 요인

•레코드 내에서 키 필드 위치는 무관하다.

// 정렬 알고리즘 선택에 영향을 미치는 요인

- ·컴퓨터 시스템의 특성 및 정렬 대상이 되는 자료의 양
- · 정렬 대상 자료의 초기 배열 상태 및 키 값의 분포 상태
- · 소요공간 및 수행시간(알고리즘 복잡도)

정답: ④

2. 주어진 자료에 맞는 정렬(sort) 알고리즘을 선택할 때 고려해야 할 사항으로 가장 <u>옳지 않은 것</u>은? [2022년 서울 7급]

- ① 필요한 작업공간 및 소요시간
- ② 정렬할 자료의 양
- ③ 정렬에 필요한 메모리(memory)의 크기
- ④ 추가되는 데이터의 배열 상태

☆ 정렬 알고리즘 선택에 영향을 미치는 요인

- ·컴퓨터 시스템의 특성 및 정렬 대상이 되는 자료의 양
- 정렬 대상 자료의 초기 배열 상태 및 키 값의 분포 상태
- · 정렬에 필요한 메모리(memory)의 크기
- •작업공간 및 소요시간(알고리즘 복잡도)

정답: ④

- 3. 비교가 아닌 분배에 의한 정렬(sorting by distribution) 방식은? [2011년 국가 7급]
 - 기수정렬
- ② 버블정렬
- ③ 퀵정렬
- ④ 히프정렬

- 기수정렬은 여러 개의 키를 가지는 레코드들을 정렬하는 분야에 적용된다.
- 각 키 단위를 기준으로 저장통(bin, bucket)에 분배하는 방식으로 정렬을 수행한다.

정답: ①

- 4. 최악 시간복잡도(worst-case time complexity)가 $O(n \log n)$ 인 정렬 방식만을 모은 것은? (단, n은 데이터의 개수이다) [2014년 국가 7급] [2019년 군무 7급 유형]
 - ① 합병(merge)정렬, 힙(heap)정렬
- ② 삽입(insertion)정렬, 버블(bubble)정렬
- ③ 선택(selection)정렬, 퀵(quick)정렬 ④ 퀵(quick)정렬, 힙(heap)정렬

♠ 최악 시간복잡도

- 합병(merge)정렬, 힙(heap)정렬 : $O(n \log n)$
- 삽입(insertion)정렬, 버블(bubble)정렬, 선택(selection)정렬, 퀵(quick)정렬 : $O(n^2)$

정답: ①

- 5. 키 값에 대한 연산을 비교와 상호교환으로 한정한 내부 정렬 알고리즘에서 가능한 최적의 연산 시간복잡도? [2003년 국가 7급]
 - $\bigcirc O(n)$
- $\bigcirc O(nlog_2n)$
- $\bigcirc O(n^2)$
- $\bigcirc O(n^2 \log_2 n)$

☆ 비교와 상호 교환 방식의 내부정렬

- 비교와 상호교환으로 한정한 내부정렬 알고리즘의 복잡도는 $O(nlog_2n)$ 이다.
- 비교와 상호교환 정렬 알고리즘의 복잡도는 $O(nlog_2n)$ 보다 더 우수할 수 없다는 사실이 학자 들에 의해 검증되었다.
- •예 : 버블정렬, 퀵정렬, 힙정렬 등의 복잡도는 $O(nlog_2n)$ 보다 더 우수할 수 없다.

정답: ②

6. 정렬 알고리즘에 대한 설명 중 가장 적절하지 않은 것은? [2021년 군무원 7급]

- ① 삽입정렬(insertion sort), 선택정렬(selection sort), 퀵정렬(quick sort) 알고리즘은 점근분 석 시 최악수행시간이 같다.
- ② 삽입정렬, 힙정렬(heap sort), 퀵정렬은 제자리정렬(in-place sorting) 구현이 가능하다.
- ③ 합병정렬(merge sort), 힙정렬, 기수정렬(radix sort) 알고리즘은 원소 간 대소비교를 통해 정렬하는 알고리즘 중 최적 알고리즘이다.
- ④ 선택정렬 알고리즘은 최악수행시간과 평균수행시간이 같다.

☆ 정렬 알고리즘

- 합병정렬(merge sort), 힙정렬, 기수정렬(radix sort) 알고리즘은 원소 간 **대소비교**를 통해 정렬하는 알고리즘 중 최적 알고리즘이다.(x)
 - → **합병정렬**은 정렬하는 알고리즘 중 최적 알고리즘이 아니다.
 - → **기수정렬**은 원소 간 **대소비교**를 실시하지 않는다.

// 정렬 알고리즘 종류별로 일반적인 특징을 정리하면 다음과 같다.

정렬방법	수행시간	최악의 경우	기억공간	안정/불안정	제자리정렬
선택정렬	$O(n^2)$	$O(n^2)$	n	불안정	0
거품정렬	$O(n^2)$	$O(n^2)$	n	안정적	0
삽입정렬	$O(n^2)$	$O(n^2)$	n	안정적	0
셀정렬	$O(n^2)$	$O(n^2)$	n	불안정	0
힙정렬	$O(n\log_2 n)$	$O(n\log_2 n)$	n	불안정	0
합병정렬	$O(n\log_2 n)$	$O(n\log_2 n)$	2n	안정적	×
퀵정렬	$O(n\log_2 n)$	$O(n^2)$	n+stack	불안정	0/×
기수정렬	O(k(n+q))	O(k(n+q))	(n+1)q	안정적	×

// 제자리정렬(in-place sort)

- 제자리정렬은 정렬 과정에서 추가 기억장소를 조금만 더 사용하는 알고리즘이다.
- 제자리정렬은 정렬 대상 자료 이외의 추가 기억장소가 상수 개를 넘지 않는 알고리즘이다.
- 제자리정렬은 정렬 대상 자료에 비해 무시할 정도의 기억장소를 더 사용하는 알고리즘이다.

// 퀵정렬

- 퀵정렬은 제자리정렬로 분류할 수도 있고 아닐 수도 있다.
- 퀵정렬은 재귀 알고리즘으로 스택을 사용하는데, 스택의 깊이 공간복잡도는 상수가 아니다.
- 하지만, 퀵정렬은 실제 사용에서는 적은 메모리만을 더 사용하므로 제자리정렬로 분류되다.

7. 다음의 정렬 방법 중 분할정복(divide-and conquer)의 개념을 이용한 정렬 방법만 골라 놓은 것으로 가장 적절한 것은? [2021년 군무원 7급]

(가) 삽입정렬	(나) 퀵정렬	(다) 힙정렬
(라) 병합정렬	(마) 기수(radix) 정렬	(바) 버블정렬
① (가), (바) ③ (다), (라)	② (나), (라) ④ (라), (마)	

☆ 정렬 방법 중 분할정복

// 퀵정렬 단계

	• 정렬 대상 리스트(배열)를 피벗 을 기준으로 2개의 부분 리스트로 분할 한다.		
분할 (divide)	• 피벗을 중심으로 왼쪽 : 피벗보다 작은 요소들		
	•피벗을 중심으로 오른쪽 : 피벗보다 큰 요소들		
	•분할된 2개의 부분 리스트는 비균등한 구조가 된다.		
	•분할된 각 부분 리스트를 정렬한다.		
정복	• 재귀호출을 이용하여 다시 분할 정복 방법을 적용한다.		
(conquer)	• 부분 리스트 크기가 충분히 작아질 때까지 재귀호출 을 적용한다.		
	• 부분 리스트 크기가 0이나 1이 될 때까지 재귀호출 된다.		
,,	• 정렬된 부분 리스트를 하나의 리스트(배열)에 합병한다.		
결합 (sombine)	• 재귀호출이 한번 진행될 때마다 최소 하나의 원소(피벗) 위치가 결정된다.		
(combine)	• 해서, 퀵정렬 알고리즘은 반드시 종료된다는 것을 보장할 수 있다.		

- 합병정렬은 균등하게 분할된다.
- 퀵정렬은 합병정렬과 달리 리스트를 비균등하게 분할된다.

정답 : ②

8. 정렬에서 키 값을 비교하는 방법이 아닌 것은? [2002년 서울 7급]

- ① Merge Sort ② Bubble Sort ③ Bucket Sort

- 4 Quick Sort
- ⑤ Heap sort

• Bucket Sort는 분배법이다. 큐에 자료를 분배하는 원리로 정렬을 수행한다.

9. 다음의 정렬 알고리즘 중 안정정렬 알고리즘으로 가장 옳지 않은 것은? [2022년 군무원 7급]

① 버블(bubble)정렬

② 선택(selection)정렬

③ 삽입(insertion)정렬

④ 합병(merge)정렬

☆ 정렬 알고리즘

정렬방법	수행시간	최악의 경우	기억공간	안정/불안정	제자리정렬
선택정렬	$O(n^2)$	$O(n^2)$	n	불안정	0
거품정렬	$O(n^2)$	$O(n^2)$	n	안정적	0
삽입정렬	$O(n^2)$	$O(n^2)$	n	안정적	0
셀정렬	$O(n^2)$	$O(n^2)$	n	불안정	0
힙정렬	$O(n\log_2 n)$	$O(n\log_2 n)$	n	불안정	0
합병정렬	$O(n\log_2 n)$	$O(n\log_2 n)$	2n	안정적	×
퀵정렬	$O(n\log_2 n)$	$O(n^2)$	n+stack	불안정	0 / ×
기수정렬	O(k(n+q))	O(k(n+q))	(n+1)q	안정적	×

선택정렬에서 불안정한 경우 단계 1 : 3 9 5₂ 8 3 단계 1 : 3 9 5₂ 8 5₁ → 5₁와 5₂의 위치가 바뀜

•키 값이 같은 레코드들의 정렬 순서가 보존되는 정렬을 안정적인 정렬이라 한다.

정답: ②

10. 정렬에서 재귀적인 방법을 사용하는 정렬 알고리즘으로 짝지어진 것은? [2000년 서울 7급]

- ① Selection Sort, Bubble Sort
- 2 Insertion Sort, Quick Sort
- 3 Quick Sort, Heap Sort
- 4 Quick Sort, Merge Sort
- (5) Heap Sort, Merge Sort

☆ 재귀적 정렬 알고리즘

- Quick Sort는 재귀적인 알고리즘으로 되어 있고,
- Merge Sort는 재귀적인 알고리즘과 반복적인 알고리즘이 있다.

정답 : ④

11. 최악의 경우 시간복잡도가 O(n log n)인 정렬 알고리즘은? [2020년 서울 7급]

① 삽입정렬(insertion sort)

② 퀵정렬(quick sort)

③ 합병정렬(merge sort) ④ 버블정렬(bubble sort)

☆ 정렬 알고리즘

// 정렬 알고리즘 종류별로 일반적인 특징을 정리하면 다음과 같다.

정렬방법	수행시간	최악의 경우	기억공간	안정/불안정	제자리정렬
선택정렬	$O(n^2)$	$O(n^2)$	n	불안정	0
거품정렬	$O(n^2)$	$O(n^2)$	n	안정적	0
삽입정렬	$O(n^2)$	$O(n^2)$	n	안정적	0
셀정렬	$O(n^2)$	$O(n^2)$	n	불안정	0
힙정렬	$O(n\log_2 n)$	$O(n\log_2 n)$	n	불안정	0
합병정렬	$O(n\log_2 n)$	$O(n\log_2 n)$	2n	안정적	×
퀵정렬	$O(n\log_2 n)$	$O(n^2)$	n+stack	불안정	O / ×
기수정렬	O(k(n+q))	O(k(n+q))	(n+1)q	안정적	×

정답 : ③